Set Theory

SET

A well defined collection of distinct objects is called a set. When we say, ‘well defined’, we mean that there must be given a rule or rules with the help of which we should readily be able to say that whether a particular object is a member of the set or is not a member of the set. The sets are generally denoted by capital letters A,B,C,….X,Y,Z . The members of a set are called its elements. The elements of a set are denoted by small letters a, b, c,..…,x, y, z. If an element a belong to a set A than we write a and if a does not belong to set A then we write a A.

 LAW OF ALGEBRA OF SETS

1.            Idempotent Laws : For any set A,

(i)           A A = A


  (ii)           A A = A .

2.            Identity Laws : For any set A,

(i)           A ö = A


  (ii)           A U = A
i.e., ö and are identity elements for union and intersection respectively.

3.            Commutative Laws : For any two sets A and B,

                       (i)  A B = B A


                      (ii)           A B = B A
                    i.e. union and intersection are commutative.

4.            Associative Laws : If A, B and C are any three sets, then

                    (i)     ( A B) C = A ( B C )
                   i.e. union and intersection are associative.


                   (ii) A ( B C ) = ( A B) C

5.            Distributive Laws : If A, B and C are any three sets, the                                              
                     (i) A ( B C ) = ( A B) ( A  C )


                     (ii) A ( B C ) = ( A B) ( A C )
                       i.e. union and intersection are distributive over intersection and union respectively.
6.            De-Morgan’s Laws : If A and B are any two sets, then
                                (i)            ( A B) = A  B
                                 (ii)           ( A  B) = A  B

7.            More results on operations on sets
If A and B are any two sets, then
(i)             A B = A B
(ii)     B  A = B  A
(iii)    A B = A A B = ö
(iv)    ( A  B)  B = A  B
(v)      ( A B) B = ö
(vi)         A  B  B  A
(vii)      ( A B) ( B A) = ( A B) ( A B) .
If A, B and C are any three sets, then
 (i)A  ( B  C ) = ( A  B)  ( A  C )
 (ii)A  ( B  C ) = ( A  B)  ( A  C )
 (iii)A  ( B  C ) = ( A  B)  ( A  C )
              (iv)A ( B C ) = ( A B) ( A C )

8.        Important results on number of elements in sets
If A, B and C are finite sets, and U be the finite universal set, then
(i)n ( A B) = n ( A) + n ( B) n ( A B)
(ii)n ( A B) = n ( A) + n ( B) A, B

                      are disjoint non


                        

No comments:

Post a Comment